This demo requires browser-use v0.7.7+.
Features
- Agent visits any news website automatically
- Finds and clicks the most recent headline article
- Extracts title, URL, posting time, and full content
- Generates short/long summaries with sentiment analysis
- Persistent deduplication across monitoring sessions
Make sure the newest version of browser-use is installed:pip install -U browser-use
export GOOGLE_API_KEY='your-google-api-key-here'
git clone https://github.com/browser-use/browser-use.git
cd browser-use/examples/apps/news-use
Usage Examples
# One-time extraction - Get the latest article and exit
python news_monitor.py --once
# Monitor Bloomberg continuously (default)
python news_monitor.py
# Monitor TechCrunch every 60 seconds
python news_monitor.py --url https://techcrunch.com --interval 60
# Debug mode - See browser in action
python news_monitor.py --once --debug
[2025-09-11 02:49:21] - ๐ข - Klarna's IPO raises $1.4B, benefiting existing investors
[2025-09-11 02:54:15] - ๐ด - Tech layoffs continue as major firms cut workforce
[2025-09-11 02:59:33] - ๐ก - Federal Reserve maintains interest rates unchanged
- ๐ข Positive - Good news, growth, success stories
- ๐ก Neutral - Factual reporting, announcements, updates
- ๐ด Negative - Challenges, losses, negative events
Data Persistence
All extracted articles are saved to news_data.json with complete metadata:
{
  "hash": "a1b2c3d4...",
  "pulled_at": "2025-09-11T02:49:21Z",
  "data": {
    "title": "Klarna's IPO pops, raising $1.4B",
    "url": "https://techcrunch.com/2025/09/11/klarna-ipo/",
    "posting_time": "12:11 PM PDT ยท September 10, 2025",
    "short_summary": "Klarna's IPO raises $1.4B, benefiting existing investors like Sequoia.",
    "long_summary": "Fintech Klarna successfully IPO'd on the NYSE...",
    "sentiment": "positive"
  }
}
Programmatic Usage
import asyncio
from news_monitor import extract_latest_article
async def main():
    # Extract latest article from any news site
    result = await extract_latest_article(
        site_url="https://techcrunch.com",
        debug=False
    )
    
    if result["status"] == "success":
        article = result["data"]
        print(f"๐ฐ {article['title']}")
        print(f"๐ Sentiment: {article['sentiment']}")
        print(f"๐ Summary: {article['short_summary']}")
asyncio.run(main())
Advanced Configuration
# Custom monitoring with filters
async def monitor_with_filters():
    while True:
        result = await extract_latest_article("https://bloomberg.com")
        if result["status"] == "success":
            article = result["data"]
            # Only alert on negative market news
            if article["sentiment"] == "negative" and "market" in article["title"].lower():
                send_alert(article)
        await asyncio.sleep(300)  # Check every 5 minutes
Source Code
Full implementation: https://github.com/browser-use/browser-use/tree/main/examples/apps/news-use