This guide shows how to implement common API patterns using Python. We’ll create a complete example that creates and monitors a browser automation task.

Basic Implementation

For all settings see Run Task.

Here’s a simple implementation using Python’s requests library to stream the task steps:

import json
import time

import requests

API_KEY = 'your_api_key_here'
BASE_URL = 'https://api.browser-use.com/api/v1'
HEADERS = {'Authorization': f'Bearer {API_KEY}'}


def create_task(instructions: str):
	"""Create a new browser automation task"""
	response = requests.post(f'{BASE_URL}/run-task', headers=HEADERS, json={'task': instructions})
	return response.json()['id']


def get_task_status(task_id: str):
	"""Get current task status"""
	response = requests.get(f'{BASE_URL}/task/{task_id}/status', headers=HEADERS)
	return response.json()


def get_task_details(task_id: str):
	"""Get full task details including output"""
	response = requests.get(f'{BASE_URL}/task/{task_id}', headers=HEADERS)
	return response.json()


def wait_for_completion(task_id: str, poll_interval: int = 2):
	"""Poll task status until completion"""
	count = 0
	unique_steps = []
	while True:
		details = get_task_details(task_id)
		new_steps = details['steps']
		# use only the new steps that are not in unique_steps.
		if new_steps != unique_steps:
			for step in new_steps:
				if step not in unique_steps:
					print(json.dumps(step, indent=4))
			unique_steps = new_steps
		count += 1
		status = details['status']

		if status in ['finished', 'failed', 'stopped']:
			return details
		time.sleep(poll_interval)


def main():
	task_id = create_task('Open https://www.google.com and search for openai')
	print(f'Task created with ID: {task_id}')
	task_details = wait_for_completion(task_id)
	print(f"Final output: {task_details['output']}")


if __name__ == '__main__':
	main()

Task Control Example

Here’s how to implement task control with pause/resume functionality:

def control_task():
    # Create a new task
    task_id = create_task("Go to google.com and search for Browser Use")

    # Wait for 5 seconds
    time.sleep(5)

    # Pause the task
    requests.put(f"{BASE_URL}/pause-task?task_id={task_id}", headers=HEADERS)
    print("Task paused! Check the live preview.")

    # Wait for user input
    input("Press Enter to resume...")

    # Resume the task
    requests.put(f"{BASE_URL}/resume-task?task_id={task_id}", headers=HEADERS)

    # Wait for completion
    result = wait_for_completion(task_id)
    print(f"Task completed with output: {result['output']}")

Structured Output Example

Here’s how to implement a task with structured JSON output:

import json
import os
import time
import requests
from pydantic import BaseModel
from typing import List


API_KEY = os.getenv("API_KEY")
BASE_URL = 'https://api.browser-use.com/api/v1'
HEADERS = {
    "Authorization": f"Bearer {API_KEY}",
    "Content-Type": "application/json"
}


# Define output schema using Pydantic
class SocialMediaCompany(BaseModel):
    name: str
    market_cap: float
    headquarters: str
    founded_year: int


class SocialMediaCompanies(BaseModel):
    companies: List[SocialMediaCompany]


def create_structured_task(instructions: str, schema: dict):
    """Create a task that expects structured output"""
    payload = {
        "task": instructions,
        "structured_output_json": json.dumps(schema)
    }
    response = requests.post(f"{BASE_URL}/run-task", headers=HEADERS, json=payload)
    response.raise_for_status()
    return response.json()["id"]


def wait_for_task_completion(task_id: str, poll_interval: int = 5):
    """Poll task status until it completes"""
    while True:
        response = requests.get(f"{BASE_URL}/task/{task_id}/status", headers=HEADERS)
        response.raise_for_status()
        status = response.json()
        if status == "finished":
            break
        elif status in ["failed", "stopped"]:
            raise RuntimeError(f"Task {task_id} ended with status: {status}")
        print("Waiting for task to finish...")
        time.sleep(poll_interval)


def fetch_task_output(task_id: str):
    """Retrieve the final task result"""
    response = requests.get(f"{BASE_URL}/task/{task_id}", headers=HEADERS)
    response.raise_for_status()
    return response.json()["output"]


def main():
    schema = SocialMediaCompanies.model_json_schema()
    task_id = create_structured_task(
        "Get me the top social media companies by market cap",
        schema
    )
    print(f"Task created with ID: {task_id}")

    wait_for_task_completion(task_id)
    print("Task completed!")

    output = fetch_task_output(task_id)
    print("Raw output:", output)

    try:
        parsed = SocialMediaCompanies.model_validate_json(output)
        print("Parsed output:")
        print(parsed)
    except Exception as e:
        print(f"Failed to parse structured output: {e}")


if __name__ == "__main__":
    main()

Remember to handle your API key securely and implement proper error handling in production code.